Connexion

Milwaukee Admirals
GP: 13 | W: 6 | L: 7
GF: 42 | GA: 40 | PP%: 20.69% | PK%: 80.00%
DG: Alexandre Loiignon | Morale : 75 | Moyenne d’équipe : 63
La résolution de votre navigateur est trop petite pour cette page. Plusieurs informations sont cachées pour garder la page lisible.

Centre de jeu
Rockford IceHogs
10-5-0, 20pts
3
FINAL
2 Milwaukee Admirals
6-7-0, 12pts
Team Stats
W1SéquenceL2
7-0-0Fiche domicile4-3-0
3-5-0Fiche domicile2-4-0
7-3-0Derniers 10 matchs4-5-1
3.80Buts par match 3.23
3.33Buts contre par match 3.08
20.69%Pourcentage en avantage numérique20.69%
85.71%Pourcentage en désavantage numérique80.00%
Milwaukee Admirals
6-7-0, 12pts
3
FINAL
6 Rockford IceHogs
10-5-0, 20pts
Team Stats
L2SéquenceW1
4-3-0Fiche domicile7-0-0
2-4-0Fiche domicile3-5-0
4-5-1Derniers 10 matchs7-3-0
3.23Buts par match 3.80
3.08Buts contre par match 3.33
20.69%Pourcentage en avantage numérique20.69%
80.00%Pourcentage en désavantage numérique85.71%
Meneurs d'équipe
Buts
Tommy Novak
9
Passes
Tommy Novak
9
Points
Tommy Novak
18
Plus/Moins
Tommy Novak
3
Victoires
Akira Schmid
6
Pourcentage d’arrêts
Akira Schmid
0.911

Statistiques d’équipe
Buts pour
42
3.23 GFG
Tirs pour
442
34.00 Avg
Pourcentage en avantage numérique
20.7%
6 GF
Début de zone offensive
36.8%
Buts contre
40
3.08 GAA
Tirs contre
444
34.15 Avg
Pourcentage en désavantage numérique
80.0%%
5 GA
Début de la zone défensive
38.6%
Informations de l'équipe

Directeur généralAlexandre Loiignon
EntraîneurTim Army
DivisionDivision 4
ConférenceConference 2
CapitaineJacob Bernard Docker
Assistant #1
Assistant #2Alexander Nylander


Informations de l’aréna

Capacité3,000
Assistance0
Billets de saison300


Informations de la formation

Équipe Pro33
Équipe Mineure18
Limite contact 51 / 100
Espoirs25


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du joueur #C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPÂgeContratSalaire moyen
1Tommy Novak0XX100.0066448772768687727471686069716858766822731,200,000$
2Peyton Krebs0X100.0071407875718285696773665952646473826722322,000,000$
3Noah Gregor0X100.007841816873848470626867626468676077662252950,000$
4Alexander Nylander (A)0XX100.006940936981858569656264627070718076662261800,000$
5Nils Hoglander 0XX100.0059458077688889696364666260525183826522322,000,000$
6Anton Blidh0XX100.0087427766787272655865636965757148766502911,200,000$
7Mikhail Maltsev0XXX100.0073448464838480648060656366706959796502611,100,000$
8Shane Wright (R)0X100.005945787580776366706267636558638775642202950,000$
9Samuel Fagemo (R)0XX100.006850706873858663616065636765656279642243900,000$
10Hendrix Lapierre (R)77XX100.006945676872807766656361676053488775632222863,333$
11Gage Goncalves (R)0XX100.006938796473758765736662596363639582632231775,000$
12Alex Limoges (R)0X100.006340966679808658675860626569637576620262750,000$
13Ben Meyers (R)0XX100.0075457863698073606659595963585874656002521,800,000$
14Isaak Phillips (R)0X100.0073457364867285603067627060646462806602231,000,000$
15Jacob Bernard Docker (R) (C)0X100.006345796673828364306363726065657276660232975,000$
16Jake Christiansen (R)0X100.006330796274888764306561706064587455650242775,000$
17Hardy Haman Aktell (R)0X100.007745706270727460306357706057526875631252870,000$
18Daemon Hunt (R)0X100.006845736269707760305960696062624280632222828,333$
19Chad Nychuk0X100.006644795878646154305849585447576379580231750,000$
Rayé
1Akil Thomas (R)0X100.006237806669828060765660565560607533600243800,000$
2Valtteri Puustinen (R)0X100.006655636268787962506258586055526530590242800,000$
3Filip Cederqvist (R)0XX100.007445805783776954605758585556636128580231850,000$
4Jacob Perreault (R)0X100.006145615577777561605558576063637929580223900,000$
5Maxim Groshev (R)0X100.007455586277747555505455585645457819572223865,000$
6Ivan Morozov (R)0X100.005042666077707250605456605050508820562241925,000$
7Jake Wise (R)0X100.006635455566706655505058555545457719542243833,000$
8Filip Johansson (R)0X100.006535666168727055305049575547468842572243925,000$
9Adam Karashik (R)0X100.006642686075636530535050544563564019550261750,000$
MOYENNE D’ÉQUIPE100.00684375657577786155616062606059706062
Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du gardien #CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SPÂgeContratSalaire moyen
1Akira Schmid0100.00788078907776787776747565715684760241833,000$
2Keith Petruzzelli (R)0100.00717072867070697068696766664380692251817,500$
Rayé
1Marek Mitens (R)0100.00706566706869717269687070707723670262750,000$
2Hunter Jones (R)0100.00606665857261666865666772723827670233775,000$
3Kevin Mandolese (R)0100.00706970866868666767656560406623660233775,000$
MOYENNE D’ÉQUIPE100.0070707083716970716968696764564769
Nom de l’entraîneur PH DF OF PD EX LD PO CNT Âge Contrat Salaire
Tim Army73696663928756USA6001,200,000$


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du joueur Nom de l’équipePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Tommy NovakMilwaukee Admirals (NSH)C/RW139918300181961223214.75%830323.321128260001250057.63%59165101.1900000211
2Noah GregorMilwaukee Admirals (NSH)C13781526024155992711.86%727521.17022227000000050.44%343112011.0900000103
3Peyton KrebsMilwaukee Admirals (NSH)C138513-320141749152316.33%326620.49033521000193043.55%186144000.9800000010
4Alexander NylanderMilwaukee Admirals (NSH)LW/RW13279-30012144211284.76%325419.61011521000000040.00%1078000.7100000000
5Mikhail MaltsevMilwaukee Admirals (NSH)C/LW/RW133581202115378168.11%1031624.33101126000091077.78%1864000.5100000020
6Anton BlidhMilwaukee Admirals (NSH)LW/RW13257-1202913247298.33%327721.362023210001230052.94%17110000.5000000100
7Jacob Bernard DockerMilwaukee Admirals (NSH)D13077120152220790%2436728.26022131000027000%0617000.3800000000
8Shane WrightMilwaukee Admirals (NSH)C1342617513112781614.81%316812.9900000000000136.14%8348000.7100001100
9Jake ChristiansenMilwaukee Admirals (NSH)D13145040811144137.14%1727721.38101117000015000%0511000.3600000001
10Samuel FagemoMilwaukee Admirals (NSH)LW/RW13145280251024794.17%721416.5200000000000014.29%734000.4700000002
11Nils Hoglander Milwaukee Admirals (NSH)LW/RW1321317514133110196.45%620415.7000000000090057.14%771000.2900001000
12Isaak PhillipsMilwaukee Admirals (NSH)D131231235131625974.00%2836227.90101331000022100%077000.1700001000
13Chad NychukMilwaukee Admirals (NSH)D130220207101110%817613.550000000006000%004000.2300000000
14Hardy Haman Aktell Milwaukee Admirals (NSH)D13022-180151718440%2027521.17000117000014000%038000.1500000000
15Gage GoncalvesMilwaukee Admirals (NSH)C/RW131121005442325.00%0614.7200000000001051.79%5611000.6500000010
16Daemon HuntMilwaukee Admirals (NSH)D1311200051162216.67%916712.910000000000000%019000.2400000000
17Hendrix LapierreMilwaukee Admirals (NSH)C/LW13011000010100%0191.480000000001000%010001.0400000000
18Alex LimogesMilwaukee Admirals (NSH)C13000000000000%0151.2100000000080050.00%21000000000000
19Ben MeyersMilwaukee Admirals (NSH)C/RW13000000110010%0141.140000000000000%00000000000000
Statistiques d’équipe totales ou en moyenne2474266108573152392204421272399.50%156401916.2869153024100031736148.22%78894103110.5400003557
Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du gardien Nom de l’équipeGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Akira SchmidMilwaukee Admirals (NSH)136520.9112.9579320394402132000130110
2Keith PetruzzelliMilwaukee Admirals (NSH)10000.7503.1619001420000013000
Statistiques d’équipe totales ou en moyenne146520.9102.9681220404442152001313110


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Nom du joueur Nom de l’équipePOS Âge Date de naissance Recrue Poids Taille Non-échange Disponible pour échange Acquis Par Date de la Dernière Transaction Ballotage forcé Waiver Possible Contrat Date du Signature du Contrat Type Salaire actuel Salaire restantSalaire moyenSalaire moyen restantPlafond salarial Non Activé Plafond salarial restant Exclus du plafond salarial Salaire annuel 2Salaire annuel 3Salaire annuel 4Salaire annuel 5Salaire annuel 6Salaire annuel 7Salaire annuel 8Salaire annuel 9Salaire annuel 10Non-échange Année 2Non-échange Année 3Non-échange Année 4Non-échange Année 5Non-échange Année 6Non-échange Année 7Non-échange Année 8Non-échange Année 9Non-échange Année 10Lien
Adam KarashikMilwaukee Admirals (NSH)D261998-01-15 12:14:27Yes200 Lbs6 ft0NoNoN/ANoNo1Pro & Farm750,000$125,000$750,000$125,000$0$0$No------------------
Akil ThomasMilwaukee Admirals (NSH)C242000-01-02 06:07:15Yes195 Lbs6 ft0NoNoN/ANoNo3Pro & Farm800,000$133,333$800,000$133,333$0$0$No800,000$800,000$-------NoNo-------Lien
Akira SchmidMilwaukee Admirals (NSH)G242000-05-12 01:14:58No205 Lbs6 ft5NoNoN/ANoNo1Pro & Farm833,000$138,833$833,000$138,833$0$0$No------------------Lien
Alex LimogesMilwaukee Admirals (NSH)C261997-09-16 17:03:11Yes201 Lbs6 ft1NoNoN/ANoNo2Pro & Farm750,000$125,000$750,000$125,000$0$0$No750,000$--------No--------Lien
Alexander NylanderMilwaukee Admirals (NSH)LW/RW261998-03-02No192 Lbs6 ft1NoNoN/ANoNo1Pro & Farm800,000$133,333$800,000$133,333$0$0$No------------------Lien
Anton BlidhMilwaukee Admirals (NSH)LW/RW291995-03-14No197 Lbs6 ft1NoNoN/ANoNo1Pro & Farm1,200,000$200,000$1,200,000$200,000$0$0$No------------------Lien / Lien NHL
Ben MeyersMilwaukee Admirals (NSH)C/RW251998-11-15 02:42:37Yes194 Lbs5 ft11NoNoN/ANoNo2Pro & Farm1,800,000$300,000$1,800,000$300,000$0$0$No1,800,000$--------No--------
Chad NychukMilwaukee Admirals (NSH)D232001-03-06 07:50:24No194 Lbs6 ft1NoNoN/ANoNo1Pro & Farm750,000$125,000$750,000$125,000$0$0$No------------------
Daemon HuntMilwaukee Admirals (NSH)D222002-05-15 10:57:16Yes198 Lbs6 ft1NoNoN/ANoNo2Pro & Farm828,333$138,056$828,333$138,056$0$0$No828,333$--------No--------Lien
Filip CederqvistMilwaukee Admirals (NSH)LW/RW232000-08-23 15:05:41Yes196 Lbs6 ft3NoNoN/ANoNo1Pro & Farm850,000$141,667$850,000$141,667$0$0$No------------------
Filip JohanssonMilwaukee Admirals (NSH)D242000-03-23 01:52:29Yes181 Lbs6 ft1NoNoN/ANoNo3Pro & Farm925,000$154,167$925,000$154,167$0$0$No925,000$925,000$-------NoNo-------
Gage GoncalvesMilwaukee Admirals (NSH)C/RW232001-01-16 05:08:01Yes184 Lbs6 ft0NoNoTrade2024-02-24NoNo1Pro & Farm775,000$129,167$775,000$129,167$0$0$No------------------
Hardy Haman Aktell Milwaukee Admirals (NSH)D251998-07-04 00:40:19Yes198 Lbs6 ft3NoNoN/ANoNo2Pro & Farm870,000$145,000$870,000$145,000$0$0$No870,000$--------No--------Lien
Hendrix LapierreMilwaukee Admirals (NSH)C/LW222002-02-09 01:10:09Yes180 Lbs6 ft0NoNoN/ANoNo2Pro & Farm863,333$143,889$863,333$143,889$0$0$No863,333$--------No--------Lien
Hunter JonesMilwaukee Admirals (NSH)G232000-09-21 07:32:55Yes202 Lbs6 ft4NoNoN/ANoNo3Pro & Farm775,000$129,167$775,000$129,167$0$0$No775,000$775,000$-------NoNo-------
Isaak PhillipsMilwaukee Admirals (NSH)D222001-09-28 03:39:49Yes205 Lbs6 ft3NoNoN/ANoNo3Pro & Farm1,000,000$166,667$1,000,000$166,667$0$0$No1,000,000$1,000,000$-------NoNo-------
Ivan MorozovMilwaukee Admirals (NSH)C242000-05-05 15:07:09Yes178 Lbs6 ft1NoNoN/ANoNo1Pro & Farm925,000$154,167$925,000$154,167$0$0$No------------------
Jacob Bernard DockerMilwaukee Admirals (NSH)D232000-06-30 09:41:11Yes181 Lbs6 ft0NoNoN/ANoNo2Pro & Farm975,000$162,500$975,000$162,500$0$0$No975,000$--------No--------
Jacob PerreaultMilwaukee Admirals (NSH)RW222002-04-15 07:36:23Yes192 Lbs5 ft11NoNoN/ANoNo3Pro & Farm900,000$150,000$900,000$150,000$0$0$No900,000$900,000$-------NoNo-------
Jake ChristiansenMilwaukee Admirals (NSH)D241999-09-12 17:50:49Yes190 Lbs6 ft1NoNoN/ANoNo2Pro & Farm775,000$129,167$775,000$129,167$0$0$No775,000$--------No--------
Jake WiseMilwaukee Admirals (NSH)C242000-02-28 01:55:04Yes190 Lbs5 ft11NoNoN/ANoNo3Pro & Farm833,000$138,833$833,000$138,833$0$0$No833,000$833,000$-------NoNo-------
Keith PetruzzelliMilwaukee Admirals (NSH)G251999-02-09 15:09:24Yes185 Lbs6 ft5NoNoN/ANoNo1Pro & Farm817,500$136,250$817,500$136,250$0$0$No------------------
Kevin MandoleseMilwaukee Admirals (NSH)G232000-08-22 03:55:58Yes180 Lbs6 ft4NoNoN/ANoNo3Pro & Farm775,000$129,167$775,000$129,167$0$0$No775,000$775,000$-------NoNo-------
Marek MitensMilwaukee Admirals (NSH)G261998-01-28 17:52:03Yes185 Lbs6 ft1NoNoN/ANoNo2Pro & Farm750,000$125,000$750,000$125,000$0$0$No750,000$--------No--------
Maxim GroshevMilwaukee Admirals (NSH)RW222001-12-14 05:01:15Yes191 Lbs6 ft1NoNoN/ANoNo3Pro & Farm865,000$144,167$865,000$144,167$0$0$No865,000$865,000$-------NoNo-------Lien
Mikhail MaltsevMilwaukee Admirals (NSH)C/LW/RW261998-03-12No198 Lbs6 ft3NoNoN/ANoNo1Pro & Farm1,100,000$183,333$1,100,000$183,333$0$0$No------------------Lien
Nils Hoglander Milwaukee Admirals (NSH)LW/RW232000-12-20 02:21:18No190 Lbs5 ft9NoNoN/ANoNo2Pro & Farm2,000,000$333,333$2,000,000$333,333$0$0$No2,000,000$--------No--------Lien
Noah GregorMilwaukee Admirals (NSH)C251998-07-28No185 Lbs6 ft0NoNoN/ANoNo2Pro & Farm950,000$158,333$950,000$158,333$0$0$No950,000$--------No--------Lien
Peyton KrebsMilwaukee Admirals (NSH)C232001-01-26 05:19:41No185 Lbs5 ft11NoNoN/ANoNo2Pro & Farm2,000,000$333,333$2,000,000$333,333$0$0$No2,000,000$--------No--------
Samuel FagemoMilwaukee Admirals (NSH)LW/RW242000-03-14 04:20:54Yes200 Lbs6 ft0NoNoN/ANoNo3Pro & Farm900,000$150,000$900,000$150,000$0$0$No900,000$900,000$-------NoNo-------Lien
Shane WrightMilwaukee Admirals (NSH)C202004-01-05 15:13:39Yes192 Lbs6 ft0NoNoN/ANoNo2Pro & Farm950,000$158,333$950,000$158,333$0$0$No950,000$--------No--------
Tommy NovakMilwaukee Admirals (NSH)C/RW271997-04-28No179 Lbs6 ft1NoNoN/ANoNo3Pro & Farm1,200,000$200,000$1,200,000$200,000$0$0$No1,200,000$1,200,000$-------NoNo-------Lien
Valtteri PuustinenMilwaukee Admirals (NSH)RW241999-06-04 08:45:57Yes183 Lbs5 ft9NoNoN/ANoNo2Pro & Farm800,000$133,333$800,000$133,333$0$0$No800,000$--------No--------Lien
Nombre de joueursÂge moyenPoids moyenTaille moyenneContrat moyenSalaire moyen 1e année
3324.00191 Lbs6 ft12.00972,278$



Attaque à 5 contre 5
Ligne #Ailier gaucheCentreAilier droit% tempsPHYDFOF
1Mikhail MaltsevNoah GregorTommy Novak40104
2Alexander NylanderPeyton KrebsAnton Blidh31113
3Samuel FagemoShane WrightNils Hoglander 20122
4Samuel FagemoGage GoncalvesMikhail Maltsev9122
Défense à 5 contre 5
Ligne #DéfenseDéfense% tempsPHYDFOF
1Jacob Bernard DockerIsaak Phillips40122
2Hardy Haman Aktell Jake Christiansen32122
3Chad NychukDaemon Hunt18122
4Jacob Bernard DockerIsaak Phillips10122
Attaque en avantage numérique
Ligne #Ailier gaucheCentreAilier droit% tempsPHYDFOF
1Mikhail MaltsevNoah GregorTommy Novak60104
2Alexander NylanderPeyton KrebsAnton Blidh40104
Défense en avantage numérique
Ligne #DéfenseDéfense% tempsPHYDFOF
1Jacob Bernard DockerIsaak Phillips63122
2Hardy Haman Aktell Jake Christiansen37122
Attaque à 4 en désavantage numérique
Ligne #CentreAilier% tempsPHYDFOF
1Tommy NovakAnton Blidh60140
2Peyton KrebsMikhail Maltsev40140
Défense à 4 en désavantage numérique
Ligne #DéfenseDéfense% tempsPHYDFOF
1Jacob Bernard DockerIsaak Phillips60140
2Hardy Haman Aktell Jake Christiansen40140
3 joueurs en désavantage numérique
Ligne #Ailier% tempsPHYDFOFDéfenseDéfense% tempsPHYDFOF
1Tommy Novak60140Jacob Bernard DockerIsaak Phillips60140
2Anton Blidh40140Hardy Haman Aktell Jake Christiansen40140
Attaque à 4 contre 4
Ligne #CentreAilier% tempsPHYDFOF
1Mikhail MaltsevTommy Novak60104
2Peyton KrebsAnton Blidh40122
Défense à 4 contre 4
Ligne #DéfenseDéfense% tempsPHYDFOF
1Jacob Bernard DockerIsaak Phillips60122
2Hardy Haman Aktell Jake Christiansen40122
Attaque dernière minute
Ailier gaucheCentreAilier droitDéfenseDéfense
Peyton KrebsNoah GregorTommy NovakJacob Bernard DockerIsaak Phillips
Défense dernière minute
Ailier gaucheCentreAilier droitDéfenseDéfense
Anton BlidhPeyton KrebsTommy NovakJacob Bernard DockerIsaak Phillips
Attaquants supplémentaires
Normal Avantage numériqueDésavantage numérique
Tommy Novak, Anton Blidh, Peyton KrebsMikhail Maltsev, Tommy NovakTommy Novak
Défenseurs supplémentaires
Normal Avantage numériqueDésavantage numérique
Jacob Bernard Docker, Jake Christiansen, Hardy Haman Aktell Jacob Bernard DockerJacob Bernard Docker, Hardy Haman Aktell
Tirs de pénalité
Nils Hoglander , Tommy Novak, Anton Blidh, Peyton Krebs, Alexander Nylander
Gardien
#1 : Akira Schmid, #2 : Keith Petruzzelli
Lignes d’attaque personnalisées en prolongation
Mikhail Maltsev, Tommy Novak, Peyton Krebs, Samuel Fagemo, Alexander Nylander, Anton Blidh, Anton Blidh, Noah Gregor, Nils Hoglander , Hendrix Lapierre, Gage Goncalves
Lignes de défense personnalisées en prolongation
Jacob Bernard Docker, Isaak Phillips, Hardy Haman Aktell , Jake Christiansen, Daemon Hunt


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
TotalDomicileVisiteur
# VS Équipe GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Rockford IceHogs624000001921-232100000138530300000613-740.33319315000101615121712812917962329538961000.00%14192.86%013729047.24%14430447.37%9919451.03%267136271130273138
2San Antonio Rampage7430000023194422000001212032100000117480.5712335580010161512251281291796212613714319631.58%11463.64%013729047.24%14430447.37%9919451.03%267136271130273138
Total136700000424027430000025205624000001720-3120.462426610800101615144212812917964441567523929620.69%25580.00%013729047.24%14430447.37%9919451.03%267136271130273138
_Since Last GM Reset136700000424027430000025205624000001720-3120.462426610800101615144212812917964441567523929620.69%25580.00%013729047.24%14430447.37%9919451.03%267136271130273138
_Vs Conference136700000424027430000025205624000001720-3120.462426610800101615144212812917964441567523929620.69%25580.00%013729047.24%14430447.37%9919451.03%267136271130273138
_Vs Division132400000424027210000025205603000001720-340.154426610800101615144212812917964441567523929620.69%25580.00%013729047.24%14430447.37%9919451.03%267136271130273138

Total pour les joueurs
Matchs jouésPointsSéquenceButsPassesPointsTirs pourTirs contreTirs bloquésMinutes de pénalitésMises en échecButs en filet désertBlanchissages
1312L242661084424441567523900
Tous les matchs
GPWLOTWOTL SOWSOLGFGA
136700004240
Matchs locaux
GPWLOTWOTL SOWSOLGFGA
74300002520
Matchs extérieurs
GPWLOTWOTL SOWSOLGFGA
62400001720
Derniers 10 matchs
WLOTWOTL SOWSOL
450100
Tentatives en avantage numériqueButs en avantage numérique% en avantage numériqueTentatives en désavantage numériqueButs contre en désavantage numérique% en désavantage numériqueButs pour en désavantage numérique
29620.69%25580.00%0
Tirs en 1e périodeTirs en 2e périodeTirs en 3e périodeTirs en 4e périodeButs en 1e périodeButs en 2e périodeButs en 3e périodeButs en 4e période
12812917961016151
Mises en jeu
Gagnées en zone offensiveTotal en zone offensive% gagnées en zone offensive Gagnées en zone défensiveTotal en zone défensive% gagnées en zone défensiveGagnées en zone neutreTotal en zone neutre% gagnées en zone neutre
13729047.24%14430447.37%9919451.03%
Temps avec la rondelle
En zone offensiveContrôle en zone offensiveEn zone défensiveContrôle en zone défensiveEn zone neutreContrôle en zone neutre
267136271130273138


Derniers matchs joués
Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
JourMatch Équipe visiteuse Score Équipe locale Score ST OT SO RI Lien
28San Antonio Rampage1Milwaukee Admirals2BWXSommaire du match
416San Antonio Rampage4Milwaukee Admirals3BLXSommaire du match
624Milwaukee Admirals7San Antonio Rampage3AWSommaire du match
832Milwaukee Admirals3San Antonio Rampage2AWSommaire du match
1040San Antonio Rampage6Milwaukee Admirals2BLSommaire du match
1248Milwaukee Admirals1San Antonio Rampage2ALSommaire du match
1456San Antonio Rampage1Milwaukee Admirals5BWSommaire du match
1660Rockford IceHogs2Milwaukee Admirals4BWSommaire du match
1864Rockford IceHogs3Milwaukee Admirals7BWSommaire du match
2068Milwaukee Admirals1Rockford IceHogs4ALSommaire du match
2272Milwaukee Admirals2Rockford IceHogs3ALXSommaire du match
2476Rockford IceHogs3Milwaukee Admirals2BLSommaire du match
2680Milwaukee Admirals3Rockford IceHogs6ALSommaire du match



Capacité de l’aréna - Tendance du prix des billets - %
Niveau 1Niveau 2
Capacité20001000
Prix des billets3515
Assistance00
Assistance PCT0.00%0.00%

Revenu
Matchs à domicile restantsAssistance moyenne - %Revenu moyen par matchRevenu annuel à ce jourCapacitéPopularité de l’équipe
31 0 - 0.00% 0$0$3000100

Dépenses
Dépenses annuelles à ce jourSalaire total des joueursSalaire total moyen des joueursSalaire des entraineurs
0$ 3,208,516$ 3,208,516$ 0$
Plafond salarial par jourPlafond salarial à ce jourJoueurs Inclus dans le plafond salarialJoueurs exclut du plafond Salarial
0$ 0$ 0 0

Estimation
Revenus de la saison estimésJours restants de la saisonDépenses par jourDépenses de la saison estimées
0$ 7 0$ 0$




Milwaukee Admirals Leaders statistiques des joueurs (saison régulière)

# Nom du joueur GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Milwaukee Admirals Leaders des statistiques des gardiens (saison régulière)

# Nom du gardien GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA

Milwaukee Admirals Statistiques de l'Équipe de Carrière

TotalDomicileVisiteur
Année GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT

Milwaukee Admirals Leaders statistiques des joueurs (séries éliminatoires)

# Nom du joueur GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Milwaukee Admirals Leaders des statistiques des gardiens (séries éliminatoires)

# Nom du gardien GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA